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The stability of supercritical Couette flow has been studied extensively, but few
measurements of the velocity field of flow have been made. Particle image velocimetry
(PIV) was used to measure the axial and radial velocities in a meridional plane for
non-wavy and wavy Taylor–Couette flow in the annulus between a rotating inner
cylinder and a fixed outer cylinder with fixed end conditions. The experimental results
for the Taylor vortex flow indicate that as the inner cylinder Reynolds number
increases, the vortices become stronger and the outflow between pairs of vortices
becomes increasingly jet-like. Wavy vortex flow is characterized by azimuthally wavy
deformation of the vortices both axially and radially. The axial motion of the vortex
centres decreases monotonically with increasing Reynolds number, but the radial
motion of the vortex centres has a maximum at a moderate Reynolds number above
that required for transition. Significant transfer of fluid between neighbouring vortices
occurs in a cyclic fashion at certain points along an azimuthal wave, so that while one
vortex grows in size, the two adjacent vortices become smaller, and vice versa. At other
points in the azimuthal wave, there is an azimuthally local net axial flow in which fluid
winds around the vortices with a sense corresponding to the axial deformation of the
wavy vortex tube. These measurements also confirm that the shift-and-reflect symmetry
used in computational studies of wavy vortex flow is a valid approach.

1. Introduction

Supercritical circular Couette flow between concentric cylinders, the inner cylinder
rotating and the outer cylinder fixed, has been studied in great depth since Taylor’s
pioneering experiments and analysis (Taylor 1923). Most research has been directed
toward the stability of the flow with little attention to the velocity field that develops
in the annulus. Nevertheless, an understanding of the velocity field is crucial to
engineering applications of the flow such as rotating filter separators used for the
separation of blood and oily emulsions.

Several limited measurements of the velocity in Taylor vortex flow have been made.
Heinrichs et al. (1988) used laser Doppler velocimetry (LDV) to measure the axial
velocity (�

z
) in Taylor vortex flow at a series of points distributed in the axial direction

for a fixed radial position. Gollub & Freilich (1976) and Berland, Jøssang & Feder
(1986) made similar measurements of the radial velocity (�

r
) at a fixed radial position

and several axial positions using LDV. Wereley & Lueptow (1994) generated contour
plots of the azimuthal velocity (�θ) based on extensive LDV measurements over a two-
dimensional (r, z) grid of about 300 points per vortex pair. All of these experiments
were used to confirm the validity of Davey’s (1962) perturbation expansion of the
Navier–Stokes equations about the circular Couette flow solution, particularly that the
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vortices strengthen with increasing rotating Reynolds number, Re¯ r
i
Ωd}ν, where Ω

is the angular velocity of the inner cylinder, d¯ r
o
®r

i
is the gap between the outer

cylinder of radius r
o
and the inner cylinder of radius r

i
, and ν is the kinematic viscosity.

Higher-order supercritical circular Couette flow regimes, as categorized by
Andereck, Liu & Swinney (1986), include wavy vortex flow, modulated wavy vortex
flow, and turbulent Taylor vortex flow. Only a few experimental measurements of the
velocity field for these flow regimes have been made. Gollub & Swinney (1975) and
Brandstater & Swinney (1987) measured the time dependence of the radial velocity (�

r
)

at a single location in the annulus for a large range of Reynolds numbers using LDV
to demonstrate that the Landau picture of the transition to turbulence is not accurate
and to determine that the attractor dimension is 2 for wavy vortex flow. Wereley and
Lueptow (1994) measured the two-dimensional (r, z) spatial distribution of the time-
averaged azimuthal velocity (�θ) for wavy, modulated wavy, and turbulent vortex flow
based on LDV measurements. They found that the magnitude of the radial gradient of
azimuthal velocity increases near both the inner and outer cylinders and that the radial
outflow region between adjacent vortices becomes more jet-like as the Reynolds
number increases. Unfortunately, only time-averaged velocity contours could be
obtained because LDV was used. A few limited space–time measurements of wavy
vortex flow have been made recently. Takeda, Fischer & Sakakibara (1994) used an
ultrasonic Doppler velocity profile method to measure the one-dimensional space–time
(z, t) dependence of the axial velocity (�

z
) in wavy vortex flow. Their results indicate

that the axial velocity dependence on axial position and time for wavy vortex flow can
be decomposed into three fundamental wavenumber-frequency modes. Ultrafast
NMR imaging was used by Kose (1994) to measure the two-dimensional space (r, z)
dependence of the radial velocity (�

r
) for wavy vortex flow, but the sampling rate was

too slow to adequately resolve the time dependence of the flow.
Numerical simulations of Taylor vortex flow and wavy vortex flow have been

successful in providing some information about the velocity field (Meyer 1967; Meyer
1969; Majumdar & Spalding 1977; Meyer-Spasche & Keller 1980; Jones 1981; Moser,
Moin & Leonard 1983; Fasel & Booz 1984; Marcus 1984; Jones 1985; Schroder &
Keller 1990). Nevertheless, most of these studies focused on the computational
methods, were aimed at specific cases, or provided minimal information about the
velocity field. Marcus’ detailed results and analysis are a notable exception (Marcus
1984). From his computational results, he conjectured that the travelling waves are a
secondary instability related to the strong radial motion at outflow boundaries between
vortices. His results also indicate that the waviness results in fluid being mixed between
adjacent vortices.

The few measurements of the velocity field for Taylor–Couette flow made by
previous researchers have been limited in scope. In most cases, only a single velocity
component was measured as a function of axial position for Taylor vortex flow, which
is steady, or as a function of time at a single location for unsteady wavy vortex flow.
In a few cases a single velocity component was measured as a function of axial position
while resolving the time dependence or in the (r, z)-plane without resolving the time
dependence. By contrast, we present here measurements of two velocity components in
a plane while resolving the time dependence. Specifically, we present here the first time-
resolved two-dimensional (r, z, t) measurements of both the radial and axial velocities
(�

r
, �

z
) as a function of Reynolds number for both non-wavy Taylor vortex flow and

wavy vortex flow with the inner cylinder rotating and the outer cylinder fixed.
The particle image velocimetry (PIV) measurements of the velocity field for

supercritical circular Couette flow described in this paper were aimed toward several
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objectives. The first objective was to measure accurately the velocity field in non-wavy
Taylor vortex flow and its dependence upon Reynolds number. The second objective
was to measure the space- and time-dependent velocity field for wavy vortex flow. The
third objective was to determine the degree to which fluid is transferred from one
vortex to an adjacent vortex in wavy vortex flow and its dependence on time and
Reynolds number. The fourth objective was to examine the dependence of the motion
of vortices on Reynolds number for wavy vortex flow. The fifth and final objective was
to experimentally determine the validity of the shift-and-reflect symmetry used in
computational models of wavy vortex flow.

2. Experimental methods

The flow cell used for the experiments consisted of a pair of concentric cylinders, the
inner acrylic one rotating and the outer glass one fixed. The inner cylinder had a radius
of r

i
¯ 4±34 cm and the outer cylinder had a radius of r

o
¯ 5±23 cm resulting in a gap

width of d¯ 0±89 cm and a radius ratio of η¯ r
i
}r

o
¯ 0±830³0±003. The two cylinders

were held concentric by aluminium endcaps which also provided the fixed-end
boundary conditions at the two axial extremes of the annulus. The aspect ratio, the
ratio of the length of the annulus to the gap width, was Γ¯ 47±7. The outer cylinder
was enclosed within a glass box and the space between the box and the outer cylinder
was filled with index-of-refraction-matched fluid similar to the working fluid described
below to prevent refraction at the curved surface of the outer cylinder.

The inner cylinder was driven by a stepper motor capable of microstepping at 25000
steps per revolution, producing a very smooth rotation. The rotational frequency of the
inner cylinder was read by an optical encoder with a resolution of 300 pulses per
revolution. These devices allowed computer control of the rotational speed of the inner
cylinder to better than 0±1% for the range of speeds used in these experiments.

The working fluid was a mixture of water, glycerol, sodium iodide, and trace
amounts of sodium thiosulfate (to prevent a yellowish tint in the solution). The sodium
iodide (57 wt%) was used to increase the index of refraction of the fluid to match that
of glass so that the laser sheet and particle images were not refracted at the curved
fluid–glass interface. Silver-coated hollow glass spheres (Potters Industries, NJ) with an
average diameter of 14 µm were added as PIV seed particles in a volume concentration
of about 1.0¬10−%. The particles had a density of 1±6 g cm−$, which was slightly less
than the density of the working solution, 1±7 g cm−$. The densities of the particles and
fluid were close enough so that the distribution of particles in suspension remained
uniform for several hours. The nominal kinematic viscosity of the solution was 3±1 cSt
at 20 °C.

Ensuring adequate control of the viscosity of the working fluid was difficult because
the viscosity of aqueous solutions of glycerol are very sensitive to temperature changes.
Because using a water jacket to control the temperature of the working fluid was
impractical, the temperature of the working fluid was continuously monitored. The
temperature of the working fluid tracked the room temperature, which varied by no
more than ³0±25 °C over the course of an experiment. The viscosity of the working
fluid, which was measured before and after an experiment using a Canon–Fenske
viscometer with an uncertainty of ³0±2%, never changed by more than 1%.

The uncertainty in the Reynolds number, owing to the variation in the inner cylinder
speed, fluid viscosity, and other factors, was at most 4%. Estimating the uncertainty
in the measured velocity data is difficult. The systematic uncertainty in the velocity
measurements resides primarily in two areas : the ability of seed particles to follow the
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flow and the accurate measurement of the particles’ average displacement between
images. The seed particles were assumed to follow the flow quite accurately because the
Stokes number for the working fluid flowing over a single particle was several orders
of magnitude less than 0±14, the maximum Stokes number for which a particle will
accurately follow the flow (Dring 1982). Thus, the systematic uncertainty in the
velocity measurement was related only to spatial resolution and laser pulse timing.
Since a cross-correlation PIV algorithm was used to determine particles’ average
displacement between images, subpixel resolution was obtained (Willert & Gharib
1991). A worst case estimate of the particle displacement measurement error is
³0±1%. The temporal resolution in the delay between laser pulses of a few
nanoseconds over a period of 10 ms results in negligible error.

For each Reynolds number at which velocity measurements were made, the annulus
was filled with fluid, and the inner cylinder was run at high speed for a few minutes to
mix the fluid and particles thoroughly. Then the inner cylinder was stopped and the
working fluid allowed to settle to quiescence. Finally, the inner cylinder speed was
ramped linearly to the desired speed. Because of the sensitivity of the Taylor–Couette
system to initial conditions, the acceleration up to each Reynolds number was held
constant at a relatively slow value of 0±3 Re s−". After the inner cylinder reached the
desired speed, the flow was allowed to develop at that Reynolds number for at least
10 min to ensure that the flow was fully developed before measurements began.
Holding the inner cylinder speed constant and repeating the measurements some time
later showed that this procedure generated repeatable results.

The flow velocities were measured using a TSI Particle Image Velocimetry system
based on cross-correlating a pair of images to avoid directional ambiguity. An
electronically shuttered 10 W argon laser was used to illuminate a radial-axial plane
through the axis of the circular Couette flow device. The laser sheet had a thickness of
0±2 mm with ³0±5% variation in thickness in the measurement field. Since the
through-sheet velocity in the azimuthal direction was so much larger than the
measured axial and radial velocities, care was taken to assure that the laser sheet timing
was short enough and the laser intensity great enough to capture a largely overlapping
population of particles in two consecutive images, even near the inner cylinder where
the through-sheet velocity is greatest. In some situations, a large through-sheet velocity
at an off-axis angle to the PIV camera could be misinterpreted as an axial velocity
component. In this case, perspective error was negligible because the imaged plane was
smaller than the CCD camera lens resulting in paraxial light rays. It was also necessary
to align the laser sheet precisely in a radial-axial plane to avoid anomalous apparent
radial velocity components caused by the azimuthal path of the particles through the
thickness of the laser sheet. In addition to careful visual alignment of the laser sheet
with the axis of rotation, PIV measurements of stable circular Couette flow were used
to ensure that the laser sheet was properly aligned. If the sheet were not in a radial
axial-plane, radial velocity components would appear for circular Couette flow,
whereas proper alignment resulted in zero radial velocity for stable circular Couette
flow. Images of 640¬200 pixels were captured at the axial centre of the flow cell, with
the pixel dimension corresponding to 0±0045 cm. Velocity vectors were calculated at a
grid of 31 points in the axial direction and nine points in the radial direction using an
interrogation region of 32¬32 pixels. Typically 175 image pairs were acquired at either
5 or 15 Hz, depending on the Reynolds number of the flow, using a TSI Cross-
Correlation CCD camera. The time between laser pulses in each pair ranged from
0±0015 to 0±0125 s, depending on the Reynolds number. For certain measurements of
the frequency content of the flow field, the spatial resolution was reduced to 200 by 32
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pixels and over 8000 image pairs were collected, resulting in very accurate frequency
measurements.

The critical rotating Reynolds number at the onset of Taylor vortex flow for η¯ 0±83
is Re

c
¯ 102, based on a cubic spline fit to the data provided by DiPrima & Swinney

(1985). Non-wavy Taylor vortex flow in the test cell was characterized by 24 pairs of
vortices in the annulus. Wavy vortices were first easily detectable using PIV at
Re¯ 131, or at a reduced Reynolds number of ε¯Re}Re

c
®1¯ 0±28. Two waves

around the annulus were detected for the 24 pairs of vortices. At Re¯ 202,
ε¯ 0±98, three waves appeared and the number of vortex pairs was reduced to 22.
For Re" 250, ε" 1±45, four waves appeared around the annulus, and the number
of vortex pairs remained at 22.

3. Results and discussion

3.1. Taylor �ortex flow

The velocity field in the radial-axial plane of the flow is shown in figure 1 for non-wavy
Taylor vortex flow based on the ensemble average of six individual velocity vector
fields. In this and subsequent figures, the annular gap is horizontal with the wall of the
inner cylinder (IC) the upper horizontal line, and the wall of the outer cylinder (OC)
the lower horizontal line. Vectors indicate velocity in the axial-radial plane. Contours
represent the azimuthal velocity, which was calculated from the radial velocity and
axial velocity using the axisymmetric azimuthal momentum equation. The azimuthal
velocity, normalized with the surface speed of the inner cylinder, varies from unity at
the inner cylinder to zero at the outer cylinder. Asterisks mark the vortex centres which
were found based on the interpolated position of minimum speed in the radial plane,
(ν

r
#�

z
#)"/#, using a weighted average over three consecutive time instants and nine

spatially adjacent points. Figure 1(a) shows the velocity field at a Reynolds number of
Re¯ 103, just above the transition to supercritical flow. Figure 1(b) shows the velocity
field at Re¯ 124, slightly below the transition to wave vortex flow.

From the velocity vectors it is evident that the vortices grow substantially stronger
as the Reynolds number increases as predicted analytically (Davey 1962) and
computationally (Fasel & Booz 1984) and confirmed experimentally for single velocity
components by other means (Snyder & Lambert 1966; Gollub & Freilich 1976;
Berland et al. 1986; Heinrichs, et al. 1988; Tsameret & Steinberg 1994; Wereley &
Lueptow 1994). The radial flow between vortices results in a deformation of the
azimuthal velocity contours as high-speed fluid from near the inner cylinder is carried
outward and low-speed fluid from near the outer cylinder is carried inward. Because
of the stronger vortices, the deformation is greater at the higher Reynolds number in
figure 1(b). It is also apparent that the radial outflow between vortices is substantially
stronger than the radial inflow, most visible at the higher Reynolds number in Figure
1(b). The stronger outflow results in more sharply deformed azimuthal velocity
contours at the outflow region than at the inflow region, consistent with direct
measurements of the azimuthal velocity using laser Doppler velocimetry (Wereley &
Lueptow 1994).

The radial velocity profile along an axial line at the centre of the annular gap and
the axial velocity profile along a radial line through a vortex centre are shown in figure
2 for Re¯ 103 and Re¯ 124. The velocities are normalized by the surface speed of the
inner cylinder. The axial position variable z is normalized by the annular gap d so that
ζ¯ z}d. The position variable in the radial direction, ξ¯ (r®r

i
)}d, is normalized by

the gap width so that it varies from ξ¯ 0 at the inner cylinder to ξ¯ 1 at the outer
cylinder. The symbols are measured velocities corresponding to those in the vector
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(a)

(b)

IC

OC

IC
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0.1

F 1. Radial-axial velocity vectors and contours of azimuthal velocity in a radial-axial plane for
Taylor vortex flow. The rotating inner cylinder (IC) is the upper boundary and the fixed outer
cylinder (OC) is the lower boundary of each frame. The velocity vectors are scaled identically in both
figures with the arrow between the frames corresponding to 0±1 r

i
Ω. Contours are spaced at 0±1 r

i
Ω.

(a) Just above transition to Taylor vortex flow, Re¯ 103, ε¯ 0±01. (b) Re¯ 124, ε¯ 0±22.
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F 2. (a) Radial velocity normalized by the surface velocity of the inner cylinder along an axial
line through the centre of the annular gap. (b) Axial velocity normalized by the surface velocity of
the inner cylinder along a radial line through a vortex centre. D, Re¯ 103, ε¯ 0±01; ¬, Re¯ 124,
ε¯ 0±22. Curves represent equation (1).
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plots of figure 1. The curves represent the velocity profile based on the Davey
perturbation expansion for Taylor–Couette flow (Davey 1962). The Davey expansion
expresses the radial and axial velocities, �

r
and �

z
, as infinite series of the following form

�
r
(r, z, ε«)¯ 3

¢

n="

An(ε«) u
n
(r) cos nλ(z®z

!
), (1a)

�
z
(r, z, ε«)¯ 3

¢

n="

An(ε«)
1

nλ
w

n
(r) sin nλ(z®z

!
), (1b)

where ε«¯ 1®(Re
c
}Re)#, A is a generalized amplitude coefficient, u

n
and w

n
are the

radial and axial shape factors found by following Davey’s analysis, λ is the
fundamental axial wavenumber, and z

!
is a term to shift the vortices axially in the

annulus. The first two terms of equation (1) were fit to the entire set of experimental
results shown in figure 1 by varying A, λ, and z

!
in a least-squares sense to achieve the

best match. Using these values of A, λ, and z
!

in the first two terms of equation (1)
provided the curves in figure 2. The match between the Davey solution and the
experimental data is quite good at the lower Reynolds number (Re¯ 103), given the
spatial resolution of the experiments. Although both measurements of the Fourier
components of the velocity field (Gollub & Freilich 1976; Berland et al. 1986;
Heinrichs et al. 1988) and direct measurement of the azimuthal velocity (Wereley &
Lueptow 1994) have previously confirmed the validity of the Davey solution, these
results show that the radial and axial velocity also fit the Davey solution. The ex-
perimentsmatch theDavey solution lesswell at the higherReynolds number (Re¯ 124).
Particularly noticeable are the higher experimental values for the radial velocity
in outflow regions at axial positions of ζ¯ 0±7 and 2±7. This is not surprising given that
the Davey expansion is most appropriate very near the transition to Taylor vortex flow
(ε«¯ 0) and has been shown to deviate from experimental results as ε« becomes greater
than 0 (Wereley & Lueptow 1994). Furthermore, by including only the first two terms
of the expansion, the higher wavenumber modes are excluded, making it difficult for
the solution to be as peaked as the experimental data. The fact that the measurements
show sharper gradients than the Davey solution indicates that spatial averaging, which
is unavoidable in correlation-based PIV, is not a problem for the results presented in
this paper.

The increasing strength of the vortices relative to the velocity of the inner cylinder
with increasing Reynolds number is evident in the velocity profiles of figure 2.
Increasing the Reynolds number from just above transition to supercritical flow
(Re¯ 103) to just below the transition to wavy vortex flow (Re¯ 124) results in more
than doubling the maximum radial and axial velocities. Even so, the maximum radial
and axial velocities corresponding to the secondary flow are only about 2–7% of the
velocity of the inner cylinder, a velocity scale of the primary flow.

The asymmetry in inflow (negative �
r
) and outflow (positive �

r
) regions is evident in

the radial velocity profile, shown in figure 2(a). At the higher Reynolds number, the
maximum outflow velocity is nearly twice the maximum inflow velocity, consistent
with Snyder & Lambert’s description of higher radial velocities at outflow regions
(Snyder & Lambert 1966). The difference in the outflow and inflow velocities affects the
widths of the two regions. The width of the inflow region is 1.3 times that of the outflow
region, as measured between zero-crossings. The differences between the inflow and
outflow radial velocities are less distinct near the transition Reynolds number, but still
noticeable. The inflow and outflow velocities should be symmetric as ε« approaches
zero.
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(a)
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(ii)
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(v)
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(b)
(i)

(ii)
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(iv)

(v)

(vi)

(vii)

(viii)

0.2

F 3(a, b). For caption see facing page.

Apart from the expected sign change, the axial velocity is asymmetric with respect
to the centre of the annular gap, as shown in figure 2(b). The maximum positive axial
velocity in the inner part of the gap is larger in magnitude than the minimum negative
velocity in the outer part of the gap, regardless of Reynolds number. This is a result
of mass conservation given the difference in flow area for the positive inner axial flow
and the outer negative axial flow.

3.2. Wa�y �ortex flow

The traditional flow visualization of wavy vortex flow by observing the motion of small
particles or dye at a clear outer cylinder suggests that the vortices passing a point on
the outer cylinder oscillate axially. Although there is evidence that the structure is more
complex (Bust, Dornblasser & Kochschmieder 1985) the simplest idea is that of a stack
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(c)
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

0.2

F 3. Velocity vectors in a radial plane for wavy vortex flow. (a) Just above transition to wavy
vortex flow, Re¯ 131, ε¯ 0±28 (two azimuthal waves) ; (b) Re¯ 253, ε¯ 1±48 (four azimuthal
waves) ; (c) Re¯ 927, ε¯ 8±09 (four azimuthal waves). The arrow at the bottom of each figure
corresponds to 0±2 r

i
Ω. The rotating inner cylinder is the upper boundary and the fixed outer cylinder

is the lower boundary of each frame.

of closed cell vortices that undulate in the axial direction with identical phase. This,
however, is not the appearance of the flow at a Reynolds number of Re¯ 131, just
above the transition to wave vortex flow, shown in figure 3. In figure 3, the annulus is
horizontal, and time progresses from top to bottom through one complete cycle of an
azimuthal wave passing the measurement plane. The ensemble-averaged vector fields
at eight evenly spaced times during an azimuthal wave are shown in figure 3. The vector
fields were ensemble averaged over 2 to 18 waves depending on the Reynolds number
and sampling frequency.
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Although the axial motion of the vortices is evident based on the location of the
vortex centres, marked by asterisks, the significant transfer of fluid between adjacent
vortices indicates that vortex cells are not independent. The transfer of fluid occurs in
a cyclic fashion with a particular vortex gaining fluid from adjacent vortices and then
losing fluid to adjacent vortices. Similar results occur at significantly higher Reynolds
numbers of Re¯ 253 and Re¯ 927, shown in figures 3(b) and 3(c). It is evident from
the velocity vectors that the degree of transfer of fluid is greater at Re¯ 253 than at
either the higher or lower Reynolds numbers. This notion is addressed in a quantitative
fashion below.

The cycle can be described most easily with reference to the middle vortex in figure
3(b) for Re¯ 253. The cycle begins with fluid from the inner part of the left-hand
vortex flowing into the middle vortex and toward the outer cylinder. Simultaneously,
fluid from the middle vortex moves into the right-hand vortex and toward the inner
cylinder. The result is that fluid winds around the outer side of the middle vortex from
left to right. The flow out of the right-hand side of the middle vortex ends in frame (ii)
of figure 3(b), so that now the middle vortex is gaining fluid from the left-hand vortex
without losing any fluid. By frame (iii) of figure 3(b), an inward flow from the right-
hand vortex also feeds fluid into the middle vortex. The flow into the middle vortex
decreases in the fourth frame as the flow in from the left-hand vortex ends. In frames
(iv)–(vii) the process reverses, beginning with flow around the inner side of the middle
vortex from right to left, followed by flow out of the middle vortex to the left, then flow
out to the left and right, and finally to the right only. Of course the middle vortex is
losing the same amount of fluid during the second half of the cycle as it gained in the
first half. The second half of the cycle (frames (v)–(viii)) appears identical to the first
half of the cycle (frames (i)–(iv)) reflected either about an outflow boundary between
the left-hand and middle vortices or about an inflow boundary between the middle and
right-hand vortices. This is called ‘shift-and-reflect ’ symmetry (Marcus 1984). A
consequence of the shift-and-reflect symmetry is that the flow associated with one
vortex is identical to the flow associated with an adjacent vortex half a cycle later,
reflected about a radial line. The degree to which the shift-and-reflect symmetry is
accurate is addressed later in this paper.

As a consequence of the shift-and-reflect symmetry, adjacent vortices possess a
character that can loosely be described as ‘out of phase’ with each other. For instance,
when the middle vortex is gaining fluid in frame (iii) of figure 3(b), the adjacent right-
hand vortex is losing fluid, and the converse in frame (vii). When flow is around the
outside of the middle vortex in frame (i), the flow is around the inside of the adjacent
right-hand vortex, and the converse in frame (v).

The implication of this cyclic transfer of fluid between adjacent vortices is a cyclic
structure in the entire flow field. Referring again to figure 3(b), fluid generally winds
around the vortices twice during the cycle. In frames (iv) and (v) there is a winding flow
from right to left, and in frames (viii) and (i) there is a winding flow from left to right.
A similar winding flow occurs for rotating Couette flow with an axial flow
superimposed on it when the axial flow is relatively strong (Lueptow 1995; Bu$ chel et
al. 1996; Sto$ ckert & Lueptow 1998). In between the winding flow sequences, every
second vortex shrinks as fluid flows out of it (middle vortex in frames (vi) and (vii)
while adjacent vortices gain that same fluid and grow. The global cycle can be described
as winding flow, growth-shrinkage of vortices, winding flow, and shrinkage-growth of
vortices.

The effect of the Reynolds number on the flow is evident from comparing figures
3(a), 3(b) and 3(c). Clearly, the vortices become stronger with increasing Reynolds
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F 4. Average axial velocity as a function of axial position for Re¯ 253 (ε¯ 1±48) at the eight
time instants corresponding to those shown in figure 3(b). Axial locations of vortex centres are
marked by vertical dashed lines. Positive values correspond to flow to the right in figure 3(b).

number, consistent with LDV measurements of the azimuthal velocity (Wereley &
Lueptow 1994). The axial motion of the vortex centres is evident in figures 3(a) and
3(b), but the vortex centre motion is diminished at the higher Reynolds number in
figure 3(c). Likewise, the transfer of fluid between vortices is evident at the lower
Reynolds numbers, particularly Re¯ 253 in figure 3(b). However, at the higher
Reynolds number in figure 3(c), the axial flow is reduced, particularly at the outflow
boundaries. This results in less apparent winding flow at the higher Reynolds number.
Several of these differences in the flow field and the dependence of these differences on
the Reynolds number are addressed in more detail below.

The net axial flow is quantified in figure 4 for Re¯ 253. To generate this figure, the
instantaneous axial flow rate at each axial position at which vectors appear was found
by numerically integrating the axial component of velocity. From this, �̀

z
, the radially

averaged axial velocity at that axial location, was determined. The 8 plots in figure 4
correspond to the 8 frames in figure 3(b). The axial positions of the vortex centres are
marked with vertical dashed lines. When fluid winds around the vortices to the right,
as in frames (i) and (viii) of figure 3(b), the axial flow rate is generally positive.
Conversely, when flow winds around the vortices to the left, as in frames (iv) and (v)
of figure 3(b), the axial flow is generally negative. In frames (ii) and (iii) of figure 4, the
positive axial flow on the left-hand side of the middle vortex and the negative axial flow
on the right-hand side of the middle vortex combine to feed fluid to the middle vortex.
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The converse occurs in frames (vi) and (vii) when there is a net loss of fluid from the
middle vortex. Similar results occur at all of the other Reynolds numbers considered,
including the lowest Reynolds number for wavy vortex flow, Re¯ 131.

In the case of supercritical circular Couette flow with an imposed axial flow, the
vortices translate axially in the annulus with a velocity somewhat larger than the
average axial velocity (DiPrima & Pridor 1979; Ng & Turner 1982; Lueptow, Docter
& Min 1992). Similarly, one would expect that the vortices in wavy vortex flow would
translate axially to the right when the axial flow is positive at all axial positions, and
vice versa. From figure 4, it is evident that the maximum axial flow occurs concurrent
with the vortex centre reaching its axial extrema. For instance in frames (iv) and (v) of
figure 4, the axial flow is generally leftward (negative), and the vortex centre position
is at its leftmost position at the same instant. Likewise, rightward, shown in frames (i)
and (viii), corresponds to the vortex being at its rightmost position. The axial
translation of the vortex generally occurs when there is essentially no net axial flow,
such as the leftward vortex motion in frames (ii) and (iii) of figure 4.

It is helpful to express the instantaneous average axial velocity in terms of an
instantaneous axial Reynolds number, Re

a
¯ �̀

z
d}ν. This Reynolds number char-

acterizes the instantaneous magnitude of the local axial flow winding around the
vortices. The maximum of this instantaneous axial Reynolds number that was achieved
during the azimuthal wave cycle is shown in figure 5(a) as a function of the reduced
Reynolds number, ε¯Re}Re

c
®1, for both positive and negative axial flow. The

difference between the values for positive and negative flow indicate the degree of error
in the experiments and data analysis. To put the magnitude of the instantaneous axial
Reynolds number in context, it is useful to compare it to the effect of similar axial
Reynolds numbers on the stability of circular Couette flow with an axial through-flow.
For instance, at rotating Reynolds numbers just above the transition to supercritical
flow (ε¯ 0+), an axial Reynolds number of 9–20 results in helical rather than toroidal
vortices (Snyder 1962; Schwarz, Springett & Donnelly 1964; Chung & Astill 1977;
Takeuchi & Jankowski 1981; Lueptow et al. 1992). For 1% ε% 5±5, axial Reynolds
numbers of the magnitude of those in this study would result in wavy vortices that
change shape rapidly with frequent dislocations (Lueptow et al. 1992). Thus, while the
instantaneous axial Reynolds numbers are not exceptionally large, they are not
insignificant when compared to results for supercritical circular Couette flow with an
axial flow.

Another way of expressing the degree of axial flow is to consider the volume fraction
of a vortex that is transferred into and out of a vortex during one azimuthal wave
period. To do this, it is necessary to first define the volume of a vortex. The
instantaneous boundary of a vortex, defined as the axial location at which extrema in
the radially averaged radial velocity occur, correspond to radial inflow and outflow
regions. The distance between either two outflow or two inflow regions corresponds to
the instantaneous wavelength of the vortex. The average wavelength was found by
averaging the instantaneous wavelength over one azimuthal wave. The average vortex
volume is then easily found from the average wavelength and the geometry of the
apparatus. The volume of fluid transferred axially across the instantaneous boundary
was found by integrating the axial velocity across the annular gap at the axial position
of the instantaneous boundary of a vortex. Figure 5(b) shows the fraction of the total
volume of a vortex that is transferred axially into and out of the vortex during one
azimuthal wave, based on the absolute value of the volume of fluid transferred axially
(both right and left) normalized by the average vortex volume. Of course, the net
volume of fluid transferred axially over an entire azimuthal wave must be zero to
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F 5. (a) Dependence of maximum instantaneous axial Reynolds number on the reduced
Reynolds number. ¬, positive axial flow; D, negative axial flow. (b) Fraction of the average volume
of a vortex that is pumped into and out of the vortex in one wave period.

maintain mass conservation, so the volume of fluid transferred either into or out of a
vortex is half that indicated in figure 5(b).

The volume of fluid pumped into and out of a wavy vortex is substantial. In some
cases, the fraction of the volume of a vortex that is transferred is over one-half. This
corresponds to one-fourth of the fluid exiting the vortex and then re-entering the vortex
within one azimuthal wave. The volume of fluid transferred across the boundaries
between vortices reaches a maximum at moderate reduced Reynolds numbers of 1 to
5. At lower Reynolds numbers the volume of fluid transferred into and out of the
vortex decreases, probably as a result of the decreased strength of the vortices evident
in figure 3. At higher Reynolds number, the fluid transfer also decreases, perhaps
corresponding to a decrease in the amplitude of the azimuthal waves discussed below.

Although the data was acquired at a single radial-axial plane for equally spaced
timesteps, the travelling-wave character of wavy vortex flow permits the conversion of
time domain data into azimuthal angular position θ using the relation θ¯ ct}(r

i
"

#
d),

where c is the azimuthal travelling wave speed and (r
i
"

#
d ) is the radius at the centre

of the annular gap. The travelling wave speed was calculated using the fundamental
frequency found from the ensemble average of the spectra of the time histories of the
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F 6. Azimuthal wave speed normalized by the surface speed of the inner cylinder, c}Ωr
i
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Curve is a least-squares fit to exponential decay.

axial and radial velocity at all points measured in the flow. The results, shown in figure
6, indicate that the wave speed normalized by the surface speed of the inner cylinder,
c}Ωr

i
, decreases monotonically as the reduced Reynolds number is increased

approaching an asymptotic value of 0±294 times the surface velocity of the inner
cylinder, consistent with other results for wavy vortex flow (Coles 1965; Jones 1981;
King et al. 1984; Marcus 1984; Schroder & Keller 1990).

The spatial distribution of the axial flow based on converting time domain data into
azimuthal position is presented in figure 7 for three Reynolds numbers. In this figure,
the axis of rotation is vertical and the azimuthal position along the centre of the
annulus is normalized by the gap width, γ¯ (r

i
"

#
d ) θ}d. Consider first figure 7(b) for

Re¯ 253. For this particular Reynolds number four waves appeared around the
annulus so the azimuthal length of one wave at the centre of the annular gap is 8±45d.
The vertical boundaries of the figure are periodic. The horizontal boundaries of the
figure correspond to the axial extent of the PIV measurement domain. In this figure,
dotted contours correspond to upward axial flow, dashed contours correspond to
downward axial flow, and solid contours correspond to zero axial flow. In addition, the
axial positions of the vortex centres and boundaries between vortices are indicated by
the heavy solid curves. Since flow visualization of wavy vortex flows is usually done
with small reflective flakes that align with the flow to result in dark bands at inflow and
outflow regions (Kataoka 1986), the curves marking the boundaries between vortices
correspond approximately to the bands in flow visualization (Burkhalter &
Koschmieder 1973; Andereck et al. 1986).

Perhaps the most striking feature of figure 7(b) is the axially elongated regions, or
vertical strips, of axial flow, both upward and downward, along the axial length of the
test cell. For instance, at an azimuthal position of 3±5%γ% 4±8 the axial flow is
downward, whereas for 0%γ% 0±5 and 7±5%γ% 8±5 the flow is upward. These
vertical strips of axial flow correspond to instances in figure 3 where the fluid is winding
around a vortex. The direction of the axial flow corresponds to the direction in which
the vortex tube is distorted. In other words, downward axial flow corresponds to a
valley in the azimuthal wave, and upward flow corresponds to a peak in the wave. This
result is consistent with the results for rotating Couette flow with an imposed axial



Spatio-temporal character of Taylor–Couette flow 73

3

2

1

0 2 4 6 8 10 12 14 16

(a)

ζ

3

2

1

0 1 2 3 4 5 6 7 8

(b)

ζ

3

2

1

0 1 2 3 4 5 6 7 8

(c)

ζ

γ

F 7. Contour plot of the spatial distribution of axial flow at the centre of the annular gap. Solid
contours are zero axial flow; dotted contours are positive axial flow; dashed contours are negative
axial flow. Contours are evenly spaced so that four contours appear between zero and the maximum
or minimum values. Solid curves marked with asterisks correspond to the axial position of the vortex
centres. Solid curves marked with circles correspond to the axial position of the boundaries between
vortices. (a) Re¯ 131, ε¯ 0±28; (b) Re¯ 253, ε¯ 1±48; (c) Re¯ 927, ε¯ 8±09.

flow, where the vortices translate in the direction of the axial flow (DiPrima & Pridor
1979; Ng & Turner 1982; Lueptow et al. 1992).

The curves corresponding to centres of the vortices tend to follow the horizontal
sections of the zero axial flow contours. On the other hand, the curves corresponding
to vortex boundaries map along the positive and negative maxima for the axial flow.
These maxima in the axial flow at one vortex boundary occur at the same time that
there is nearly zero net axial flow at the vortex centre and across the boundary on the
opposite side of the vortex. For instance, there is a maximum in the downward flow
through the boundary at an azimuthal position of γ¯ 2±7 and an axial position of
ζ¯ z}d¯ 1±67. Yet there is almost no axial flow at the vortex centre at an axial position
of ζ¯ 1±0 and at the boundary at an axial position of ζ¯ 0±5, both just below this
maximum downward flow. This corresponds to the situation of the right-hand vortex
feeding fluid into the middle vortex shown in figure 3. Situations where fluid enters
both the top and the bottom of the vortex correspond to regions in figure 7(b) where
positive contours at a lower vortex boundary and negative contours at an upper vortex
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boundary overlap in the azimuthal direction, such as occurs for the middle vortex in
figure 7(b) at γ¯ 1±8. The opposite situation, where fluid simultaneously exits both the
top and the bottom of the vortex, correspond to negative contours at the lower
boundary and positive contours at the upper boundary, such as at γ¯ 6±0 for the
middle vortex in figure 7(b).

The effect of Reynolds number on the axial flow is evident considering figures 7(a)
and 7(c) ; for Re¯ 131 and Re¯ 927, respectively, in comparison with figure 7(b).
Note that at Re¯ 131 only two azimuthal waves appear around the circumference of
the test cell, so the azimuthal wave extends to γ¯ 16±9. It is evident that at this lower
Reynolds number the azimuthal overlap of regions of upward and downward axial
flow has greater azimuthal extent, about 6d, than at Re¯ 253 where the overlap is only
about 2d wide. At the same time, the vertical strips of pure positive or negative axial
flow are nearly the same width (about 2d ). On the other hand, at the higher Reynolds
number shown in figure 7(c), the azimuthal overlap of regions of upward and
downward axial flow extend only a short distance azimuthally (less than 2d ). The
vertical strips of pure axial flow are about 3d wide, somewhat wider than at the lower
Reynolds numbers. Similar figures of the flow for other Reynolds numbers are
consistent with these results.

A typical appearance of flow visualization of wavy vortex flow at high Reynolds
numbers is a boundary that has large-amplitude waviness with boundaries above and
below that have a much smaller amplitude of waviness (Coles 1965; Kataoka 1986;
Donnelly 1991). This same character is evident in figure 7(c). The middle boundary,
which is an inflow boundary, has a large waviness. In contrast, the adjacent upper and
lower outflow boundaries in the figure have substantially smaller amplitude waviness.
To our knowledge, the cause of this phenomenon has not been discussed elsewhere,
although Marcus (1984) showed a similar result for numerical simulation of wavy
vortex flow. Some insight into this result is gained by referring back to figure 3(c) for
the same Reynolds number as shown in figure 7(c), where it is clear that the radial
outflow regions are much stronger than the inflow regions. In addition, there is much
less axial flow at outflow regions than at inflow regions. This suggests that the waviness
of the boundary is directly related to the degree of fluid transfer between vortices.
Because of the strong radial flow in outflow regions the axial flow that transfers fluid
between vortices is suppressed leading to reduced waviness at outflow boundaries
between vortices. On the other hand, the weaker radial flow at inflow regions permits
an axial transfer of fluid between the vortices on either side of the inflow region
resulting in a more wavy inflow boundary.

In addition to the periodic character of the flow into and out of adjacent vortices,
the vortex centres move both axially and radially in a cyclic fashion. Figure 8 shows
the trajectory of two adjacent vortex centres bounding a radial inflow region through
the passage of one azimuthal wave, corresponding to one complete cycle around the
curves. The vortex associated with the path on the left rotates CCW, and the vortex
associated with the path on the right rotates CW. The distance between the dotted
horizontal lines corresponds to the middle half of the annular gap [(r

i
"

%
d )% r%

(r
i
$

%
d )], and the top of the figure is toward the inner cylinder. The sense of the motion

of the vortex centre along the trajectory is shown by the arrows in the figure. The axial
trajectories of a pair of vortex centres are in phase. In other words, the vortex centres
reach their farthest right positions and farthest left positions at the same time. Upon
leftward motion of a vortex pair, the CCW vortex moves radially outward, whereas the
CW vortex moves radially inward, and vice versa for motion to the right. Thus, the
radial motion of the vortex centres is out of phase.
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(a)

(b)

(c)

(d)
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( f )

F 8. Mapping of the vortex centre path for an adjacent pair of vortices (CCW on the left-hand
side and CW on the right-hand side) with an inflow region between them. Arrows indicate the
direction that the vortex centre proceeds along the paths. From top to bottom Re¯ 131, 202, 253,
373, 615, 1221; εE 0±28, 0±98, 1±48, 2±66, 5±03, 10±97.

The radial motion of the vortex centres increases to a maximum at Re¯ 253 and
then decreases with increasing Reynolds number. Of course, the axial and radial
motion at the lower and upper limits, corresponding to non-wavy Taylor vortex flow
and non-wavy turbulent vortex flow, is zero, so the tendency for the motion to decrease
as these limits are approached is not surprising. Perhaps more interesting is the aspect
ratio of axial to radial motion of the vortex centres. At low Reynolds numbers the axial
motion is substantially greater than the radial motion. As the Reynolds number
increases, the aspect ratio decreases, although the axial motion is always greater than
the radial motion. At lower Reynolds numbers, the path of the vortex centre is a figure
of eight nearly aligned to the walls. At higher Reynolds numbers, the path of the vortex
centres becomes paisley-shaped with the major axis of the adjacent vortex centre paths
at alternating slight angles to the walls. In the latter cases, the centre of one vortex
moves towards the wall, while the centre of the adjacent vortex moves away from the
wall. The instant at which the vortex centre is closest to a wall corresponds to the
instant that fluid is winding around the opposite side of the vortex, as is evident in
figure 3(b). In fact, the radial translation of the vortex centre is related to the degree
of axial flow. For instance, in figure 5(b) the maximum axial flow occurs for Re¯ 253
(ε¯ 1±48), which clearly has the greatest axial translation shown in figure 8. Likewise
low axial flow rates at high and low Reynolds numbers correspond to minimal radial
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motion of the vortex centres. Thus, the axial winding flow around the vortices acts to
shift the vortices toward the wall opposite the axial flow. Similar results have been
obtained computationally for Taylor vortex flow with an imposed axial and radial flow
(Lueptow & Hajiloo 1995).

The axial motion of the vortex centres is one measure of the amplitude of the
azimuthal waviness. However, the amplitude of the waves, h, can also be measured in
terms of the motion of the inflow boundaries and outflow boundaries between vectors.
All three measures are plotted in figure 9 as a function of the reduced Reynolds
number. At low reduced Reynolds numbers all three measures indicate a wave
amplitude of about one gap width. For ε" 1, however, the amplitude of the motion
of centres and outflow boundaries are nearly equal and decrease to a small fraction of
the gap width with increasing Reynolds number. On the other hand, the axial motion
of inflow boundaries remains a significant portion of the gap width. The net effect is
the character evident in figure 7(c), where the boundaries associated with inflow are
quite wavy, while the boundaries associated with outflow are nearly flat. Bust et al.
(1985) measured the wave height axial distance between crest and troughs of waves
observed at the surface of the outer cylinder. They found that, for ε" 1, the wave
height was as much as 1±2d for water and about half this value for 10 cSt silicone oil.
In our case, where the viscosity is 3±1 cSt, between that of water and silicone oil, the
wave height measured at the inflow boundaries is between that of water and silicone
oil measured by Bust et al., although the wave height at the outflow boundaries and
centres is substantially less. Bust et al. could not explain the curious dependence of the
wave amplitude on the viscosity of the fluid, although they suggested that it might be
related to their observation of the vortex height at the wall of the outer cylinder or end
effects. The measurements in figure 9, however, are not based on the appearance of the
vortex at the wall of the outer cylinder, nor are they for such a small aspect ratio as
used by Bust et al. They also found that for 0! ε! 1, the wave height increases from
zero to a maximum at ε¯ 1, in contrast to the results in figure 9 that show a maximum
in wave height for 0! ε! 1. The difference may be attributable to the experimental
methods and locations at which the wave height was measured.

We finally address the ‘shift-and-reflect ’ symmetry that has been used in
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(a)

(b)

(c)

(d)

F 10. (a) Velocity vector field for a time instant at Re¯ 615. (b) Reflected velocity vector field
corresponding to the velocity vector field in (a) after shifting axially to minimize the error with (c).
(c) Velocity vector field half a cycle after that shown in (a). (d ) Vector difference between velocity
vectors in (b) and (c) magnified by a factor of 10.

computational models of wavy vortex flow as a strategy to minimize computations
(King et al. 1984; Marcus 1984). The shift-and-reflect symmetry refers to the apparent
similarity of the velocity field, observed at a particular azimuthal position and time, to
the velocity field observed at the same azimuthal position half a period later reflected
axially about a vortex boundary. Although Marcus justified the use of shift-and-reflect
symmetry by noting the decay of Fourier modes that do not obey the shift-and-reflect
symmetry, the time-resolved velocity fields shown in figure 3, can be used to validate
experimentally the assumption of shift-and-reflect symmetry. To accomplish this, the
velocity field at one time instant was compared to the velocity field at a time instant
half a cycle later, as illustrated in figure 10. The original velocity field, figure 10(a) was
reflected about the centre of the figure to produce figure 10(b). In general, it was
necessary to shift the reflected velocity field axially to minimize the error between the
reflected velocity field and the velocity field half a cycle later, figure 10(c). The error
between the velocities at any given axial position of the reflected flow field was the
absolute value of the difference between the speeds of the actual velocity and the
reflected velocity, normalized by the average of the two speeds. The overall error
between the two velocity fields was based on the spatial average of the error at all
vector positions in the velocity field averaged over all time instants in one azimuthal
wave cycle. Based on this approach, the axial shift of the reflected velocity field was
chosen as the position for which the overall error between the actual velocity field and
the reflected velocity field was smallest.
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F 11. Fractional difference between the reflected velocity field and the velocity field
half a cycle later.

The reflected velocity field in figure 10(b) is nearly identical to the velocity vector
field half a cycle later, shown in figure 10(c). The vector difference between the two
velocity fields is shown in figure 10(d ), with the difference velocity field amplified by
a factor of 10 compared to the velocity fields in figure 10(a)–10(c). The space and time
averaged normalized error for the Reynolds numbers studied is quite small, as shown
in figure 11. The error in using the shift-and-reflect symmetry assumption is greatest at
the lowest Reynolds numbers, but the shift-and-reflect symmetry assumption is clearly
quite reasonable over the entire range of Reynolds numbers considered.

4. Conclusions

Above the transition from subcritical circular Couette flow to non-wavy Taylor
vortices, the velocity field in the annulus is much as one might expect based on flow
visualization. The vortices are independent cells, the vortical motion of which grows as
the rotating Reynolds number increases. Even so, the axial and radial velocities are
more than an order of magnitude less than the maximum azimuthal velocity. The
velocity field matches the Davey perturbation expansion well at Reynolds numbers
near transition, but deviates somewhat from the theory as the Reynolds number
increases. The deviation is probably due both to the limited number of terms included
in the expansion and the fact that the Davey analysis is most accurate near the
transition Reynolds number.

At Reynolds numbers above the second supercritical transition, that to wavy vortex
flow, the velocity field is much more complex. In fact, the motion of the vortices and
the degree of fluid exchange between vortices is quite different from what one would
expect based on flow visualization experiments. The vortices themselves move axially,
but there is also substantial radial motion of the vortex centres. The radial motion of
adjacent vortices is out of phase so that when one vortex moves radially inward, the
adjacent vortices move radially outward. The axial motion decreases continually as the
Reynolds number increases, but the radial motion has a maximum at a moderate
Reynolds number above that for transition. The radial motion of the vortex toward
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either wall is accompanied by a generally axial flow winding around the opposite side
of the vortex, not unlike the winding flow around vortices when an axial through-flow
is superimposed upon circular Couette flow. The result is that there are regions of net
axial flow in the direction of the axial deformation of the vortex tube at particular
azimuthal locations along the azimuthal wave. Azimuthally adjacent to these regions
are regions where an individual vortex grows in size while the two adjacent vortices
become smaller, and vice versa. This action transfers a substantial portion of the fluid
from one vortex to an adjacent vortex and back throughout one azimuthal wave. Since
wavy vortex flow consists of a stack of wavy vortices that are in phase, the fluid motion
at any particular location along the length of an azimuthal wave extends axially. Thus,
there is an axially elongated region, or strip, of net axial flow of one sense, a vertical
strip where alternating vortices are losing fluid, a vertical strip of axial flow of the
opposite sense, and a vertical strip where the vortices that were losing fluid are now
gaining fluid. These alternating strips of axial flow and fluid transfer propagate around
the annulus of the circular Couette flow device at the azimuthal wave speed. Finally,
the concept of shift-and-reflect symmetry appears to be valid for wavy vortex flow.

This work was supported by the National Science Foundation.
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